Imperial College
London

MENG ROBOTICS MANIPULATION PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Robotics Manipulation

Author: Module Leader:
Boon Liang Wong, Pelin Ulusoy Prof. Ad Spiers

March 31, 2022

Contents

1 Robot Modelling

2 Pick and Place (Wooden Blocks)
2.1 Setting of Open Manipulator-X
2.2 Standby Position
2.3 Cartesian Space Trajectory and Joint Space Trajectory
2.4 Specific Elements of Task 2 L

3 Trajectory Following (Drawing)

4 Interactive Bartendering
4.1 Specific Implementation

A First Appendix
A.1 Dilerent simulations withthetas
A.2 DH transformations
A3 SQUAIES . . .
A.4 Planar extension of Cubic Design for Pen Holder
A.5 Force Closure Gripper with Straight Extension of Link Length
A.6 Form Closure Gripper with Barrier
A.7 Pen Holder Version 2 e
A8 PenStand
A.9 Code for Drawing Functions
A.10 General Setting of Open Manipulator-X & Standby Position.
A.11 Joint Space Trajectory Function
A.12 Example Code for Waypoints + Inverse Kinematics + Joint Space Trajectory . . .
A.13 Code for Open-Manipulation Simulation in MATLAB

~No oo O

oo

10
10
11
13
14
14
15
15
16
16
17
20
20

Chapter 1

Robot Modelling

Forward kinematics:

a ‘ d ‘ 0
0 0 01
0 7.7 0
0 0 | 62 — 90+ rad2deg(atan(2.4/12.8))
11 =13.0 0 03 — rad2deg(atan(2.4/12.8))
0 04
0 0

O U W N | =
|

Table 1.1: DH Table for Open Manipulator-X

Base frame of notation z is pointing upwards with x and y forming the horizontal plane. All s
represent angles of their respective actuators. In implementation rather than simulation, value of
0 would mean 2048 in encoder values except for the third encoder that has a o [Set which we get
rid of by subtracting 90 when converting to encoder values after inverse kinematics. To summarise,
in our simulation, 0 for all in DH table would mean robot pointing upwards and looking towards
the x-axis directly.(figures: A.1, A.2)

Transformation 1: Contains only ; because z-axis of world frame is already pointing out axis
of rotation.(figure A.3)

Transformation 2: This transformation is only made for visualisation purposes as combining
transformations 1 and 2 would create the same calculations for latter frames. In our case, we
wanted to make sure the visualized frames are at same locations as our actuators. Link o[set of
7.7cm is the distance to the second frame along z-direction. (figure A.4)

Transformation 3: Transformation 3 is made up of several components. First of all, we wanted
to twist the z into axis of rotation and x to the link direction. Angle of -90 is the link twist which
puts z into position but y along the link. So we subtract 90 from the joint angle in column to
create a 90 degree turn around the z axis and put x-axis along the link. The other o[Sek is the
atan(2.4/12.8) which is angle between imaginary hypotenuse to the next frame and next link. As
there is some o[sSekt in y direction of the current frame, we can neither use link length which is
along x or link o [sekt which is along z. So we are taking the link as the imaginary line between the
two actuators and add the ol[Set to make x point in the same direction as the imaginary link.
We also have , which belong to the angle of the second actuator.(figure A.5)

Transformation 4: In transformation 4, we are using previously mentioned imaginary link length
as 13.0cm and subtract the because when all angles are 0 we want 3 to be perpendicular to
ground. Not only that, 3 itself is not measured from imaginary link but the real one. 3 here is
the angle of the third actuator.(figure A.6)

Transformation 5: Transformation 5 has next link length of 12.4cm and joint angle, 4. We
don’t need to add/subtract o [Selt as they cancel each other out in frame 3 & frame 4.(figure A.7)
Transformation 6: Transformation 6 only consists of 12.6cm link length which extends until the
middle length of gripper. X-direction is the robot direction when encoder 1 is 2048. Y-direction is
the other axis forming the base plate together with x. Both are increasing away from the base of
the robot. (figure A.7)

Graphical simulation: For our simulation, we are creating the links by using X, y, and z co-
ordinates located at the last column of our transformation matrix. Links are created by draw__link
function which takes the 2 matrices representing their respective frames as inputs and draws a line
between their points using plot3 function.

For visualising co-ordinate frames of each axis, we shifted their respective DH matrices
along x y and z by 1 to help draw unit vectors along each of the axis. For x shift we did a DH
transform with link length. For z shift we did a DH transform with link o [Set. For y we first did a
link twist of 90 to make z in the direction of y. Then we did the link o [Sekt again as now we moved
along the new z direction. We got the position of each of these new frames and then created lines
from original matrices to shifted ones representing each of the axis using plot3, red for x axis, blue
for y and green for z.

To visualise the whole model, our draw function gets 4 inputs and uses forward kinematics
to create individual frames. We then call draw__link function on connected pairs of frames and
show coordinates on individual ones. Frame 2 is not shown as it does not represent an individual
actuator. We assign these plots to variables and delete them when the function is next called. This
is why all of the variable names are global and deletion is only done after function is called at least
once. There is also a 0.000001 seconds pause to ensure all robot positions can be seen individually.
We draw a dot at the tip of the tool which is the only part of the function not get deleted next
call to ensure path can be visible at the end.

We have tested our forward kinematics with di [erent combinations to ensure the angles are as
intended and the forward kinematics works.(figures: A.1, A.2)

Inverse kinematics: In inverse kinematics we first assigned the tool angle which is the angle
it makes with the z axis. This angle is the total angle of ,, 3 and 4 which we named it . Then
we find the ; from x and y using atan2 which allows us to treat motion as 2d. We can assign
a temporary variable ® which is the horizontal distance of the tip to the base. We also create a
temporary variable 2 which is z - 7.7 to ensure all the points are shifted down by the distance
between actuators 1 and 2. As there is no axis creating a change in z of the tool before actuator 2
we can treat this point as the new origin.

1 = atan2(y; x)
R = (X2 +y2);horizontal distance of the tip to the base

I, =13:0
I, =12:4
I3 =12:6
2=z T

Using ® and 2 we now have a system with three and their sum which is the tool angle
Using the tool angle we can find coordinates of the third actuator by subtracting tool length’s %
and 2 components from the tool position.

2=2 lzcos
X=X lzsin

Now we have a model similar to the one in the lectures with an end point and two encoder values

one for the linkl which is 5 the other is for relative one of the link2 which is 3.

2 2 212
2e+ %= 1915

COS »

2|1|2
sin o= 1 cos(2)
3 = atan2(sin »;cos ;)
ki =11+ l,cos »
kg = |2 sin 2

Finishing the inverse kinematics we need to make sure we get rid of the o set the same way we
did in forward kinematics. In this case , being 0 would mean actuator 2 and 3 along the same
line which needs a shift back and then we add the o set to the next . Also note we are using
elbow up version for our inverse kinematics.

0:024,
> = atan2(®; 2) atan2(ky; ki) atan(m)
= .+ atan(%)
3= 3 0:128
4= 3 2

Some important things to point here is that our inverse kinematics does not use the whole di-
rectional information of the tool which in this case is reasonable as we can only make combinations
formed in the vertical plane formed by the hypotenuse of x and y axes and z axis. This is caused
by having only 4 actuators thus having only 4ADOF. =0 would mean tool pointing upwards, 90
means away from the robot horizontally and 180 would point downwards. X, y and z inputs are
de ned the same way as our forward kinematics. In the actual implementation of the robot as
2048 is not the upwards but forward direction for encoder 3 we implement one more line which is
subtracting 90 degrees from 3. This shifts the angle counterclockwise direction in the previously
mentioned vertical frame ensuring any angle we calculate for the encoder 3 doesn't have an o set.

It is also important to show how these values which are currently in degrees are calculated
to encoder values. As we said the 0 degrees are equal to 2048 in encoder values we add -180 to
the degrees to shift their range from [-180,180] to [0,360]. Afterwards we do the basic conversion
required by rationing the degree range to encoder range,

enc = ((deg+ 180)=360) 4095

Creation of the squares: To create the squares we use the inverse kinematics to feed the
desired end positions (and plausible tool directions) to get the required for the simulation. We
calculate the points which are put into an array to prevent any delays that can be caused by calling
inverse kinematics throughout the simulation. (Full Code: A.13)

The other important thing is the pacing of these points. While the simulation itself doesn't
have torque thus would be smooth regardless of the placement of the points. To consider how
this actually would be implemented in the real robot, we used cubic interpolation for waypoints in
Cartesian Space.

(X) = ap + ayx + apx? + azx?®
a = Xo;ay =0;8 = Z- (X Xo)iaz = == (Xr Xo)

As this function creates the points that are in a line, thing that needs to be added isx; and

Xo wWhich are the start and end points for each of the lines (x is shorthand notation for 4 variables
required: X, y, z and). Thus any square needs to have 4 corners as 4 points de ned and we
feed that into a function we name getthosepoints to output an array of points on the line. It is
important that each corner point is x; and Xo once to get them fully connected. This means that
for getthosepoints functions has to have input point pairs, (p1,p2), (p2,p3), (p3,p4), (p4,pl). We
also need to specify number of points we want to create along the line and angles at both end
points.(gure A.9)

Chapter 2

Pick and Place (Wooden Blocks)

2.1 Setting of Open Manipulator-X
In this task, we decided to use: (Appendix: A.10)

Drive Mode(10) is set to Time-based Pro le(4).

Operating Mode(11) is put into Position Control Mode(3) with Max/Min Position.
Pro le Velocity(112) for 4 joints excluding Gripper = 300 ms

Pro le Acceleration(108) for 4 joints excluding Gripper = 30 ms

Pro le Velocity(112) for Gripper = 200 ms

Pro le Acceleration(108) for Gripper = 30 ms

S S

Time-based Pro le is selected for this task because it is more intuitive and it encourages smooth
movement as compared to Velocity-based Pro le. By changing Pro le Velocity and Pro le Accel-
eration, we are setting the time span to reach the velocity (the total time) as well as acceleration
time of the Prole. In Time-based Pro le, when DYNAMIXEL receives updated desired position
from a new Goal Position(116) while it is moving toward the previous Goal Position(116), velocity
smoothly varies for the new desired velocity trajectory.

2.2 Standby Position

To perform any task, Open Manipulator-X is given a prede ned position as Standby Position to
ensure that the robot is moving to known position before starting any tasks. This allows us to
understand the trajectory of the robot when it moves to the next position. (Appendix: A.10)

2.3 Cartesian Space Trajectory and Joint Space Trajectory

For task 2, we manually craft the Waypoints for Cartesian Space to plan its Trajectory where we

can decide which path is the fastest for robot arm to move. Along the path, inverse kinematics
used in Task 1 is utilised to calculate the 4 joint angles for each waypoint. However, the movement
is not as smooth as we thought. Therefore, Joint Space Trajectory is implemented to calculate
joint angles between 2 waypoints. In this case, cubic interpolation with 6 time step values is used
as below:

(t) = ap + ait + ayt? + ast®; (Appendix : A:11)
a= osa=0;a=Z(r oia= @ o)

To avoid collision in Cartesian Space, joint space trajectory is not implemented for end e ector.
When end e ector reached the desired location, it is programmed separately to release or grip object
with pausing in place before next movement. (Example code for Waypoints + Inverse Kinematics
+ Joint Space Trajectory: A.12)

2.4 Specic Elements of Task 2

For Task 2a, Gripper position is always pointing downward towards the spectral board to grip
object and place it in designated location. This ensures the gripper grips at the center of cube
which allows easier release/placement of cube in end position.

For Task 2b , the general trajectory in Cartesian Space is to move to the location of cube, grip
the cube at the center with gripper pointing downwards. The gripper turns 90° degree to become
parallel to the board and place it at end position when the red face of cube is at the top. For
di erent orientation of cube, the planned trajectory above can be repeated until red face of cube
is facing upwards. Placing of cube when gripper is parallel to the board is challenging because
inverse kinematics used assumed that the cube is always gripped at the center of gripper length
instead of the tip of gripper. However, we grip using the tip of gripper. This factor is taken into
account when deciding waypoints with ne-tuning function in place to ensure generalisation of code.

For Task 2c, we start by picking an ending position that is easier for turning of gripper joint.
The rest of the trajectory is the combination of task2a with task2b. If the red face is pointing
inwards or outward, we generally solve this by moving the cube to stacking position while changing
orientation of cube at the same time to smooth out the movement. If red face is facing downwards,
repeated motion of task2b is needed before moving to end position.

For more information, please refer to code submission onttps://youtu.be/qZf5Lk_meao?t=24

Chapter 3

Trajectory Following (Drawing)

There are two main additions needed to be done for task 3. First is the design of the pen holding
tools. The second one is creating trajectories for drawing straight lines and arcs.

1. Pen holding (Video: https:/lyoutu.be/qZf5Lk_meao?t=109)

Our design went through 2 main adjustments. Cubic design for pen holder was the rst idea.
In order for pen to not tilt while drawing, planar extensions perpendicular to the length of the pen
are added at two opposing sides of the cube (gure A.10). This way the cube would restrict tilting
of pen during gripping thus the pen will be stable. Yet these two parallel planes are incompatible
for the original gripper because the original gripper of the robot has a slope to it from base to
tip. To solve this problem, we decided to design new set of grippers (gure A.11) with straight
arm length extensions to ensure tting in between the two planar extensions of the cube. Another
version with form closure (gure A.12) is also designed where one more extension at tip is added,
creating a barrier in front of the cube.

Both of these designs did not work because we had to be very precise about the gripping (the
planar extensions sometimes obstruct the gripping). Not only that, we did not realize the impor-
tance of rubber texture within the original gripper that enhances friction during gripping. We
believe that the friction provided by the rubber is a better solution. So we changed our design
to not include any sort of extensions but rather a simple cube (gure A.13). It has the same
dimensions as the cubes from task 1. The hole within it is designed to have the same slope as the
pen to prevent sliding.

The next thing was the pen stand design (gure A.14). To grip the pen holding cube at the
center of gripper length, it is easier to grip it if the pen holder(cube) is standing. Although it is easy
to change the inverse kinematics for tool length, it is not secure to grip at the tip as the tip is not
covered by the rubber texture of the gripper. So we decided to use a pen stand with slightly big-
ger cut of radius of the pen and a little extrusion at the bottom to t into the hole of spectral board.

2. Drawing Straight Lines and Arcs

For diagonal, horizontal and vertical lines (straight lines), we get the starting point and end
point as inputs, then convert it into equidistant interval points (Appendix: A.9, lingen function).
Depending on how many points are needed, we can modify the function accordingly. The gener-
ated interval points between starting and end positions will be used as waypoints. Whereas for arc
drawing, radius and center of arc will be used as inputs and processed by cosine and sine operators
to generate interval points for the arc. In this function, arc circumference and drawing direction
(clockwise/anticlockwise) can be modi ed by setting rotation angles (Appendix: A.9, arcgen func-
tion). Once these waypoints are generated, we only need to decide drawing sequences of the lines
and move joint angles through joint space scheme to smooth out motion.

Chapter 4

Interactive Bartendering

The idea of our task is to enable robotic arm to act as part of futuristic pub/bar that allows

customer to interact with robotic arm by giving speci ¢ token of di erent shapes to the robot arm

to instruct the robot to perform di erent tasks such as handing food and pouring alcohol shot.
We believe that by giving customers the opportunity to interact with robotic arm, more customers
will be attracted by the interactive elements. Moreover, the delicate pouring motion of the robot
can also be part of marketing plan. Therefore, more business in ow to the industry.

To be more speci ¢, customer will be given token of di erent shapes based on their needs. Then,
customer will hand the token to the robot by closing its gripper, the encoder in gripper will
interpret the token based on the size. It will then perform designated task associated with the
size of token. For more information, please take a look at the demonstration video:https:
/lyoutu.be/qZf5Lk _meao?t=148

4.1 Specic Implementation

1. How to accept and interpret token?

First, we 3D printed tokens that are rectangular in shape but di er in length. To allow the robot
arm to accept the token, we disable the torque in the robot gripper when it is in standby/stable
position with the rest of joints locked. By disabling torque in gripper, customer can hand the token
to the gripper and close it. At the same time, the gripper encoder will read its position continu-
ously until it is less than a threshold value, the gripper will understand that it has been handed
a token. After that, another reading of gripper position is recorded, di erent gripper positions
correspond to di erent tokens (size of token is measured beforehand).

2. How to generate delicate pouring motion?

The approach taken is by having thorough understanding of both Cartesian Space and Joint Space.
Since a lot of functionalities have been built through previous task, pouring motion is generated
using Joint Space Trajectory to ensure smooth movement. The gripper position is adjusted accord-
ingly based on the waypoints. Essentially, a lot of experiments were done to make sure the gripper
grips the alcohol container at the right place so that it will not hit joint link during pouring. After
that, gripper adjustment was done multiple times to allow uid ow out of container in a delicate
way. Once pouring is done, we also need to make sure the movement is smooth enough for uid
not to spurt out of container when it is moving back and forth.

3. How to perform di erent tasks with repetitive motion?

In terms of code, the whole process from accepting, interpreting token to performing tasks are
placed into a while loop. Once the task has been performed, the robot arm will return to standby
position to accept another token. Each task is programmed with known coordinates beforehand.
Therefore, after token is interpreted, it will just run as normal program.

Appendix A

First Appendix

A.1 Dierent simulations with thetas

Figure A.1: All angles equal to O

Figure A.2: All angles equal to 30

10

A.2 DH transformations

Figure A.3: First transformation on the schema with all angles equal to 30

Figure A.4: Second transformation on the schema with all angles equal to 30

11

Figure A.5: Third transformation on the schema with all angles equal to 30

Figure A.6: Fourth transformation on the schema with all angles equal to 30

Figure A.7: Fifth transformation on the schema with all angles equal to 30

Figure A.8: Sixth transformation on the schema with all angles equal to 30

12

A.3 Squares

Figure A.9: Squares drawn for task 1.d

13

	Robot Modelling
	Pick and Place (Wooden Blocks)
	Setting of Open Manipulator-X
	Standby Position
	Cartesian Space Trajectory and Joint Space Trajectory
	Specific Elements of Task 2

	Trajectory Following (Drawing)
	Interactive Bartendering
	Specific Implementation

	First Appendix
	Different simulations with thetas
	DH transformations
	Squares
	Planar extension of Cubic Design for Pen Holder
	Force Closure Gripper with Straight Extension of Link Length
	Form Closure Gripper with Barrier
	Pen Holder Version 2
	Pen Stand
	Code for Drawing Functions
	General Setting of Open Manipulator-X & Standby Position
	Joint Space Trajectory Function
	Example Code for Waypoints + Inverse Kinematics + Joint Space Trajectory
	Code for Open-Manipulation Simulation in MATLAB

